

Behind the Scenes of the Swiss Financial Center

The infrastructure and modeling its risks

Pedro Fonseca – Head Risk Analytics and Reporting, SIX AG

14 January 2013

Classification: Public

- 1. The infrastructure of the Swiss financial center
- 2. Its risks and their quantification

Roughly speaking: what SBB does for people ... SIX does for money and securities

, backbone of the Swiss financial center

 \mathbf{X}

To illustrate things, let us use the help of Mr. Bernoulli

Jakob Bernoulli

A very famous Swiss mathematician from the 17th century, a helper of actuaries and quants

To illustrate things, let us use the help of Mr. Bernoulli Let us give him an account and a credit card

Mr. Bernoulli using the SIX infrastructure...

Cash Transactions

- He pays at a store with his card
- 200'000 terminals
- 24 transactions per second
- The merchant receives cash from SIX
 CHF 200m per day
- He withdraws cash from an ATM
- ▶ 10 per second
- Pre-pays his phone, uses a Giftcard, ...
- He pays online with his card (Saferpay)
- Total: 120 card transactions per second
- He sets up e-billing and direct debit
- Cash transactions between banks
 - ▶ 20 per second, worth CHF 5m

 \mathbf{x}

Mr. Bernoulli using the SIX infrastructure...

- He buys shares of the only firm he recognizes from the 17th century...
- Orell Füssli (1519, also money printers)
- He also buys some ETF's, Bonds and collateralized structured products
- ▶ 5 transactions per second
- ▶ Daily: CHF 4b and 220 new listings
- 40'000 securities listed
- Large offer of indices, such as SMI
- His bank and insurer obtain liquidity from the SNB using repurchase agreements (Repo)
- Outstanding CHF 70b during 2008 crisis

Trading & Indices

- The data is distributed to the world Financial Data
 Cash is transferred between banks Cash Transactions
- Securities are transferred between banks ---- Handling of Securities

Mr. Bernoulli using the SIX infrastructure...

• He reads the financial data and news:

- Data on 7 million financial instruments:
 - a) Reference data
 - b) Market data (prices, indices, etc.)
 - c) News and analyses

Financial Data

- ▶ 30'000 price telegrams per second
- 850 data sources (e.g. exchanges)

Mr. Bernoulli using the SIX infrastructure ...

• The securities he bought are <u>cleared</u> at once

- SIX is the central counterparty
- ▶ 15 transactions per second

• ... and settled three days later

- SIX transfers cash and securities
- 2 transactions per second

He receives dividends from his shares and coupons from his bonds

▶ 1'500 corporate actions daily

• He decides to short-sell some shares

Securities lending & borrowing

• His shares are registered

- ► He is invited for general meetings
- His assets are (electronically) kept in a safe
- CHF 2,5 trillion assets

 \mathbf{X}

▶ 800 tons of gold & silver worth CHF 10b

"The Swiss Fort Knox"

Handling of Securities

The safe seen from the inside...

The safe seen from the inside (really)

Quiz: what are the risks?

Sample of answers:

Frequent answer, but wrong

"There are risks, and the largest is called Basel III"

Sorry, you sound like a bad head of risk management at a bank

"There are many risks.
 They create jobs for risks controllers and actuaries"

Actually right!

In "Cash Transactions"

• IT-system breaks and most people cannot make card payments

► Yes, it happens. Most (in)famous event: 24.12.2001...

• System is hacked and card information is stolen

▶ Never happened before at SIX. It has happened in other companies.

• A large online merchant defaults

SIX can be held responsible for delivering paid products not yet delivered...

• The interbank payment system does not work

There are strict requirements from the SNB, including contingency plans.

In "Trading and Indices"

• The stock exchange does not function

▶ It happens. Banks can use other exchange platforms in the meantime.

• A mistake is done during an IPO

▶ Remember Facebook? UBS does.

• An index is wrongly calculated

► Potential consequences can be big.

• Self-regulation is compromised

► Large reputational effect.

In "Financial Data"

- The world is split in half between Bloomberg and Thomson-Reuters
- ► Something like this happened in 1494 with the "Treaty of Tordesillas"

In "Handling Securities"

• IT-system breaks and transactions are not possible

There are strict requirements from the SNB, including contingency plans.

• A settlement member defaults

If there are outstanding cash positions (credit), then it is nice to have good collaterals to cover them.

• A clearing member defaults

- Risk mutualization: the importance of properly computing margin requirements and default fund contributions...
- A mistake is make in executing a corporate action
- ► Correcting the mistake can result in a loss, or a profit.

How (not) to analyze risks?

Afghanistan war: social, political and economical risks

How to analyze risks?

- Quantification is very useful it allows to:
- Understand better the risk and what the main factors are
- ► Track the effect of changes in the business environment
- Compare and aggregate risks

▶ Estimate the required capital, as well as allocate it

"Actuarial" Model Example: Loss Distribution Approach (LDA)

- It needs historical data
- ► E.g. insurance claims
- Copula aggregation can be quite non-intuitive
- No direct link with the business environment
- Credit spreads, processes, etc. are not visible

"**Process Based**" **Model** Example: Causal Model

- Driving factor must be identified and calibrated
- ► For instance: default probability from credit spreads

Provides a natural frame to introduce correlations

- Use common factors. Examples: a market, or default of the same bank across various risks
- Direct link with the business environment
- ► For instance: improving a process might decrease exposure

Example: Counterparty risk

Risk 1 – Liquidity Management in Settlement		
Processes and Threats:	Variables (example)	
Banks have collateralized lines	<i>a_i</i> = Limits (CHF 10 milli	Correlation
The banks use their lines	U_i = Uniform variable (0	Correlation
A bank defaults	<i>B_i</i> = Bernoulli variable	dofaulte
Collaterals are sold in market	<i>M_i</i> = Gaussian variable	
$Loss = \sum_{i=1}^{N} a_i \times U_i \times B_i \times M_i$	(if <i>M</i> < 0)	

Risk 2 – Liquidity Management in Treasury

Processes and Threats:	Variables (example)		
Treasury has various bank accounts	<pre>b_j = Limit (CHF 10 millic</pre>		1
The treasurer deposits cash in accounts	<i>D_j</i> = Triangular variable	Correlation	ion)
A bank defaults	<i>B_j</i> = Bernoulli variable	dofaulte)
Recovery after liquidation	R _j = Recovery rate (0%)		

$$Loss = \sum_{j=1}^{M} b_j \times D_j \times B_j \times (R_j - 1)$$

Example: Counterparty risk

 \mathbf{X}

Example: Operational risk

- Mistakes from corporate actions
- ► There is historic data (a requirement from the regulators)

• Processes are well understood, including some risky ones

- Usage of external data
- Manual operations
- ► Time pressure

Example: Operational risk

Corporate Actions team in action...

 \mathbf{X}

14 January 2013, Public

Example: Operational risk

Risk 3 – Operational Mistakes in Corporate Actions

Processes and Threats:	Variables (example)
Size of a corporate action	<pre>A i = Log-normal variable (m=10, s=3)</pre>
Yearly mistake frequency	<i>N</i> = Poisson variable (λ=10)
Relative size of a mistake	S _i = Uniform variable (a=0, b=7%)
Instruments are sold/bought	<i>M</i> _i = Gaussian variable (μ=0%, σ=5%)

Thank you for your attention.

Pedro Fonseca

14 January 2013

Classification: Public

